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Abstract—Network and service coordination is important to
provide modern services consisting of multiple interconnected
components, e.g., in 5G, network function virtualization (NFV),
or cloud and edge computing. In this paper, I outline my
dissertation research, which proposes several approaches to
automate such network and service coordination. All approaches
dynamically react to the current demand and optimize coordina-
tion for high service quality and low costs. The approaches range
from centralized to distributed methods and from conventional
heuristic algorithms and mixed-integer linear programs to ma-
chine learning approaches using supervised and reinforcement
learning. I briefly discuss their main ideas and advantages over
other state-of-the-art approaches and compare strengths and
weaknesses.

I. INTRODUCTION

In various practical scenarios, services consist of multiple
chained components, where each component is implemented in
software and provides its own functionality. For example, com-
ponents could be virtual network functions (VNFs) in network
function virtualization (NFV) [2] and 5G or 6G [3], microser-
vices in a service mesh for cloud and edge computing [4], or
machine learning functions in a pipeline [5]. To deploy these
services according to the current demand, each component can
be instantiated multiple times across different nodes in the
network. Nodes are distributed at different locations, where
each node may represent a large data center, a small edge
server, or a node without compute capacity. These nodes are
interconnected by links with varying data rate limitations.

As user demand for the different services arrives at the
network’s ingress nodes, network and service coordination
ensures that the requested services are deployed and provided
with high quality and low costs. Particularly, I distinguish four
main coordination aspects as illustrated in Fig. 1: 1) Service
scaling, which determines the number of required instances
per component. 2) Service placement, where suitable nodes
are selected for deploying these instances. 3) Flow scheduling,
where incoming flows are assigned to the placed instances.
4) Routing, which determines the flows’ path between users
and the assigned instances.

These four coordination aspects are inter-dependent and
should therefore be optimized jointly [6]. As they depend on a
multitude of parameters, it is challenging to ensure that enough
resources are allocated for good service quality but also no
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resources and costs are wasted. With demand changing over
time, coordination has to happen dynamically online.

This paper presents and discusses the work of my dis-
sertation [1] (completed in January 2022), which proposes
approaches for automated and dynamic network and service
coordination to address the aforementioned challenges. I group
these approaches into either conventional approaches like
heuristics and mixed-integer linear programs (MILPs) or into
machine learning approaches that learn from available data.
For both kinds of approaches, I discuss state of the art and
related work in Sec. II. Sec. III defines the problem statement
of network and service coordination. Sec. IV and V present
the various conventional and machine learning approaches to
solve the problem, which are the main contribution of my
dissertation. Finally, Sec. VI discusses the potential impact of
these contributions and concludes this paper.

II. RELATED WORK

A. Related Conventional Approaches

Herrera and Botero [2] as well as Kaur et al. [7] survey state-
of-the-art approaches for network and service coordination.
The large majority of this existing work proposes conventional
coordination approaches that are manually designed by human
experts, precisely defining MILP formulations or heuristic al-
gorithms according to their knowledge and understanding of a
given scenario or problem. In turn, most of these conventional
approaches assume detailed and global knowledge and control
of network and services. For example, Moens and De Turck [8]
propose a centralized optimization approach for placing VNF
instances in a hybrid setting, coexisting with physical network
functions. Unlike the approaches proposed in my dissertation,
the authors do not consider dynamic scaling of services or
traffic routing between component instances. Similarly, other
related approaches [9]–[11] focus on placement of instances
and/or traffic routing but disregard flexible scaling of services
according to the current demand.

In contrast, my proposed coordination approach “BSP”
(Sec. IV-A) jointly optimizes service scaling and placement
as well as flow scheduling and routing. In addition to BSP,
which is a centralized coordination approach, I also propose a
hierarchical and two fully distributed coordination approaches
(Sec. IV-B and IV-C). The benefit of these approaches over
typical centralized approaches is that they do not require global
knowledge and control of the entire network and all involved
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services. Furthermore, they scale better to large networks,
making them more realistically applicable.

There is comparably little related work on hierarchical
or distributed coordination approaches. In virtual network
embedding (VNE), which is closely related to network and
service coordination, Samuel et al. [12] and Ghazar et al. [13]
propose hierarchical approaches. In contrast to my proposed
hierarchical approach (Sec. IV-B), theirs do not aggregate
or abstract any information such that computations on high
hierarchical levels become very expensive, comparable to
centralized approaches. Similarly, multiple authors propose
distributed approaches for VNE [14], [15], which split the
network into clusters that process incoming flows in parallel.
My proposed approaches in Sec. IV-C go one step further
and coordinate service scaling and placement as well as flow
scheduling and routing in a fully distributed manner – each
node making fast and local coordination decisions by itself.
In doing so, these approaches are based on information that
is locally available and are even more scalable then existing
distributed approaches.

B. Related Machine Learning Approaches

In recent years, a growing amount of research has been
focusing on machine learning for network and service co-
ordination [16]. Some authors propose machine learning ap-
proaches that support and improve conventional coordination
approaches, e.g., by predicting traffic demands [17], VNF
instances’ processing delays [18], or their resource require-
ments [19]. Complementing and going beyond this research,
I propose a machine learning approach for learning from
real-world performance data to precisely allocate required
resources (Sec. V-A). Integrating this machine learning ap-
proach with a conventional coordination approach results in
significantly fewer wasted resources while maintaining high
service quality.

Other research considers self-learning coordination ap-
proaches using deep reinforcement learning (DRL) [20]. Some
existing approaches combine DRL with a conventional heuris-
tic [21], [22], others rely on a priori traffic knowledge as
input for their DRL approaches [23]. To the best of my
knowledge, my “DeepCoord” approach (Sec. V-B) is the
first self-learning DRL approach for network and service
coordination that works with realistically available partial and
delayed observations. It jointly optimizes scaling, placement,
and scheduling without requiring support from a heuristic,
making it more versatile and less error-prone than existing
approaches. I also propose one of the first distributed co-
ordination approaches using DRL (Sec. V-C), where each
node coordinates scaling, placement, scheduling, and routing
autonomously. This distributed approach allows fast individual
coordination decisions for rapidly incoming flows, scaling to
large networks. Finally, I propose a suite of centralized and
distributed DRL approaches for multi-cell selection in wireless
mobile networks (Sec. V-D). These approaches complement
existing DRL approaches for coordinating wireless mobile
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Fig. 1: Four main aspects of network and service coordination.

networks, e.g., for dynamic power control [24] or resource
allocation [25].

III. PROBLEM STATEMENT

This section defines the parameters, decision variables, and
optimization objectives of network and service coordination.

A. Problem Parameters

The problem parameters are given by the network, the
services, and the incoming traffic as detailed next. The network
contains distributed compute nodes interconnected by links.
As such, it can be modeled as graph G = (V,L), where each
node v ∈ V has limited compute capacity capv , e.g., CPU
cores, and each link l ∈ L has a limited data rate capl and a
propagation delay dl.

In line with the IETF’s definition of service function chain-
ing (SFC) [26], I define services as linear chains of intercon-
nected components, e.g., representing VNFs, microservices,
or machine learning functions. Each component c ∈ Cs of
service s ∈ S can be instantiated zero, one, or multiple
times and deployed across different nodes in the network,
depending on the current demand. Each instance of c has
identical functionality and requires compute resources rc(λ)
depending on the data rate λ it has to process.

Traffic for these services arrives in the form of flows
at the network’s ingress nodes over time. Each flow f =
(sf , v

in
f , vegf , λf , t

in
f , δf ) ∈ F is characterized by its requested

service sf ∈ S, its ingress and egress nodes vinf , vegf ∈ V ,
its data rate λf , its time of arrival tinf , and its duration δf .
For successfully processing a flow, it has to be steered from
its ingress node through instances of all requested service
components to its egress node.

B. Decision Variables

As mentioned in Sec. I and illustrated in Fig. 1, I con-
sider four main aspects of network and service coordination:
1) Scaling, 2) placement, 3) scheduling, and 4) routing.

Service scaling and placement determines how many in-
stances to deploy of each component c and at which nodes to
place them. Binary decision variable xc,v(t) ∈ {0, 1} indicates
whether or not an instance of c is placed at node v at time t. In
the example of Fig. 1, xc1,v1 = xc1,v2 = xc2,v3 = 1. I focus on



inter-node coordination and assume that coordination within a
node is controlled transparently by the node’s operating system
or systems like Kubernetes [27].

Flow scheduling is determined by decision
variable yf,c(t) ∈ V ∪ {∅}, which indicates at which
node v (if any) to process flow f that requests component c
at time t. In Fig. 1, flow f1 requests c1 and is scheduled to
the instance of c1 at node v1, i.e., yf1,c1(t

in
f1
) = v1. Finally,

routing determines the path between different instances and
ingress and egress. Here, decision variable zf,v(t) ∈ V ∪{∅}
indicates where to route flow f next that is currently at
node v. In Fig. 1, flow f2 is routed from v2 to v3 directly,
i.e., zf2,v2(t) = v3.

C. Optimization Objectives

Many optimization objectives are conceivable for network
and service coordination. As main objective, I focus on pro-
viding the requested services to as many users as possible by
steering and processing flows successfully without exceeding
capacities. As additional objective, I consider minimizing
flows’ end-to-end delay, i.e., from entering the network to
traversing all service component instances and finally depart-
ing the network again. Short end-to-end delay is important for
good Quality of Service (QoS) but may require more instances
and resources, thus potentially conflicting with the main ob-
jective. In some of my work, I also consider minimizing the
number of deployed instances or the number of active compute
nodes to reduce costs.

IV. CONVENTIONAL APPROACHES

Conventional coordination approaches, e.g., heuristics or
MILPs, are designed by experts and build on detailed models
tailored to specific scenarios. They are suitable for scenarios
that are well understood and can be modeled and observed
accurately. In this section, I briefly present three types of
conventional coordination approaches: A centralized heuristic
(Sec. IV-A), a hierarchical approach (Sec. IV-B), and two
fully distributed approaches (Sec. IV-C). For each approach,
I reference the corresponding paper containing details and
information about co-authors.

A. Centralized Coordination [28]

I propose a heuristic algorithm (called BSP) for joint
optimization of all four coordination aspects, even supporting
services with complex bidirectional structures [28]. The BSP
algorithm starts with an initialization phase, which precom-
putes the shortest paths between all pairs of nodes, taking link
delay and capacity into account. Afterwards, the algorithm’s
core part, the embedding procedure, is executed repeatedly
following a destroy-and-repair approach using tabu search. The
embedding procedure sequentially handles incoming flows,
scheduling them to existing instances or placing new instances,
depending on available resources and taking end-to-end delay
into account. Through the repeated execution with tabu search,
the initial solution is improved iteratively, overcoming poten-
tial local optima.

Fig. 2: Hierarchical coordination aggregating lower-level de-
tails into domains controlled by higher-level coordinators.
(Figure from [29]; ©2021 IEEE.)

The evaluation (detailed in [28]) on real-world network
topologies shows that the BSP heuristic achieves close to opti-
mal results, when compared against an optimal MILP solution.
While it requires more instances to process many flows, it
leverages these instances to achieve even lower end-to-end
delay than the MILP solution. It accurately scales the deployed
services to the current demand, handling increasing demand
by placing more instances and allocating more resources and
then removing them again when demand decreases. In doing
so, the BSP heuristic is magnitudes faster than the comparable
MILP approach (e.g., 6.7 s compared to 137.1 h).

B. Hierarchical Coordination [29]

In large networks, detailed up-to-date global knowledge may
not be available and centralized decisions may be too ineffi-
cient, even with a heuristic. Therefore, I propose a hierarchical
coordination approach, which works in two phases [29]: In
the bottom-up phase, it aggregates information from lower
hierarchical levels, hiding unnecessary details from higher-
level coordinators to reduce complexity as illustrated in Fig. 2.
In the following top-down phase, higher-level coordinators
make coarse-grained coordination decisions that are then re-
fined at lower levels. I implement the hierarchical approach
as an MILP, but the general framework can also be applied
to heuristics or other optimization approaches. Compared to
an equivalent centralized approach, this hierarchical approach
finds solutions with similar quality but is significantly faster.

C. Fully Distributed Coordination [30]

Going one step further, I propose two simple and fast heuris-
tics for fully distributed coordination [30]. The algorithms are
executed independently in parallel at each node in the network
and rely only on local observations and control at each node.
This allows fast-paced online coordination in practical large-
scale networks with rapidly arriving flows. One algorithm is
greedy (called GCASP) and designed to be simple, effective,
fast, and frugal, sending flows along the shortest path but
avoiding congestion. The other algorithm (called SBC) can
take further information from neighboring nodes into account
to compute node scores and achieve higher solution quality.
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Fig. 3: The fully distributed heuristics (GCASP, SBC) reach
comparable solution quality but are much faster than the
centralized BSP and BSP+. (Figure from [30]; ©2020 IEEE.)

According to the evaluation [30], the fully distributed
heuristics achieve similar solution quality to the centralized
BSP+ approach (Fig. 3a). BSP+ is an adjusted version of
BSP (Sec. IV-A) that, unlike BSP, can properly handle rapidly
arriving and partially overlapping flows. However, the fully
distributed heuristics make much simpler and faster coordina-
tion decisions in parallel at each node, leading to significantly
faster runtimes (Fig. 3b).

V. MACHINE LEARNING APPROACHES

Machine learning coordination approaches rely less on
expert knowledge but learn coordination from available data or
their own experience without human intervention. Again, this
section briefly presents my proposed coordination approaches
using machine learning. Details are in the referenced papers.

A. Machine Learning for Dynamic Resource Allocation [31]

Most coordination approaches either allocate fixed resources
per instance or rely on simple, predefined functions to estimate
and allocate the required resources rc(λ) of an instance of
service component c with current load λ. As it is hard to
accurately model real-world components and their resource
requirements manually, I propose an approach using super-
vised learning that automatically derives these models from
available real-world benchmarking data [31].

In the evaluation [31], I compare six different machine
learning approaches to learn from real-world VNF benchmark-
ing data [32] and predict their required resources under varying
load. I show that integrating the trained machine learning
models into the conventional BSP algorithm (Sec. IV-A) re-
quires low overhead but can significantly improve coordination
performance, effectively avoiding over- and under-allocation
of resources.

B. Self-Learning Centralized Coordination [33], [34]

As an alternative to conventional approaches, I propose a
novel and completely autonomous self-learning coordination
approach using model-free DRL called DeepCoord [33], [34]
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Fig. 4: DeepCoord iteratively interacts with the network
through an adapter. (Figure from [34]; ©2021 IEEE.)

(Best Student Paper at CNSM 2020 and invited talk at IETF
110). The actor-critic approach trains a central DRL agent
based on realistically available partial and delayed observa-
tions from monitoring. The trained approach then quickly and
periodically interacts with the network by obtaining monitor-
ing data and updating service scaling and placement as well as
coordination rules for flow scheduling (Fig. 4). The scheduling
rules provided by DeepCoord are deployed at all network
nodes and applied to incoming flows locally at runtime.

In doing so, DeepCoord consistently outperforms existing
approaches, requiring significantly fewer resources to ensure
high success rates on real-world network topologies. It self-
adapts to varying scenarios without human intervention, is
robust to change, generalizes to unseen traffic patterns, learns
to optimize multiple objectives, and scales to networks of
realistic size while only relying on information that is available
in practice. Specifically, I observe that DeepCoord reaches
up to 76% more successful flows and more than 2x higher
total utility than BSP (Sec. IV-A) when optimizing multiple
objectives.

C. Self-Learning Distributed Coordination [35]

Combining ideas from the fully distributed heuristics in
Sec. IV-C and DeepCoord (Sec. V-B), I propose a distributed
self-learning coordination approach using DRL [35]. After
centralized training, it deploys separate DRL agents at each
node in the network, coordinating incoming flows individually
and in parallel but using self-learning DRL agents rather
than hand-written algorithms. As such, the approach combines
the benefits of both Sec. IV-C and V-B: It only requires
local observations and control, scales independently from the
network size (depends only on the network degree), allows
fast, fine-grained per-flow control, and self-adapts to new
and unseen scenarios without expert knowledge or human
intervention. Specifically, the DRL agent at a node decides
for each incoming flow whether to process the flow locally
(potentially starting a new instance) or to forward it to one of
the neighboring nodes, taking available instances, delays, and
resource utilization into account (Fig. 5).

Thanks to the fast per-flow control, this distributed DRL
approach achieves even higher success rates than the cen-
tralized DeepCoord approach, which works with aggregated
observations and more coarse-grained scheduling tables. The
approach also significantly outperforms the fully distributed



Fig. 5: The DRL agent at each node locally observes and
controls individual flows. (Figure from [35]; ©2021 IEEE.)
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Fig. 6: Distributed DD-CoMP and D3-CoMP learn much faster
than centralized DeepCoMP. (Figure adapted from [36].)

heuristics of Sec. IV-C as it can self-adapt to varying traffic
patterns, services, and networks.

D. Self-Learning Coordination for Mobile Networks [36]

Finally, I study how to apply self-learning DRL ap-
proaches to coordination in wireless mobile networks. I pro-
pose three novel DRL approaches, DeepCoMP, DD-CoMP,
and D3-CoMP, for controlling which mobile users to serve
by how many and which cells using coordinated multi-
point (CoMP) [36]. DeepCoMP leverages central observations
and control of all users to select cells almost optimally. In turn,
DD-CoMP and D3-CoMP are multi-agent DRL approaches,
that learn much faster than DeepCoMP (Fig. 6), allowing
distributed, robust, and highly scalable coordination. All three
approaches learn from experience and self-adapt to varying
scenarios, supporting online transfer learning, and reaching 2x
higher Quality of Experience (QoE) than existing approaches.
Compared to related approaches, they have very few built-in
assumptions and do not need prior system knowledge, making
them more robust to change and better applicable in practice.
The corresponding simulation environment, mobile-env [37],
is available as open source, allowing others to easily train their
own DRL approaches and build upon my work.

VI. CONCLUSIONS AND IMPACT

I propose several approaches for network and service coor-
dination, each with different strengths and weaknesses. The
conventional coordination approaches in Sec. IV are most
suitable for well-understood and rather static scenarios, where
they can build on existing expert knowledge. In these cases,
they can provide reliable and close-to-optimal performance.
Here, the centralized BSP approach (Sec. IV-A) can jointly
coordinate scaling, placement, scheduling, and routing in sce-
narios with globally available traffic information and control.
The fully distributed heuristics (Sec. IV-C) focus on large-
scale scenarios with many, rapidly arriving flows, where they
only need local information and benefit from their simplicity
and speed. The hierarchical approach (Sec. IV-B) presents
an intermediate solution between highly optimized centralized
approaches and highly scalable distributed approaches.

While conventional coordination approaches still constitute
the large majority of existing approaches, a clear trend goes
towards machine learning approaches (Sec. V). These ap-
proaches rely less on predefined rules or human expert knowl-
edge and instead leverage available data to learn network
and service coordination. They can either support existing
conventional approaches (Sec. V-A) or even replace them
completely (Sec. V-B to V-D). While the approach of Sec. V-A
can be trained on automatically generated VNF benchmarking
data, the DRL approaches of Sec. V-B to V-D are trained in
interaction with a (simulated) network environment through
self-learning. Their self-learning and self-adaption capabilities
make them ideal for many practical scenarios, which are
not perfectly understood and may change dynamically over
time. Again, the proposed approaches in Sec. V-B to V-D
range from centralized to distributed architectures, which are
useful for different problem sizes, traffic patterns, and compute
resources. The distributed DRL approaches of Sec. V-C and
V-D are a good choice for most scenarios since they combine
my insights and lessons learned from all previous approaches.
As such, they offer very good solution quality, self-adapt to
various scenarios, and are fast and scalable.

My contributions focus on the conceptual and algorithmic
problem of network and service coordination, which is funda-
mental in many real-world use cases, such as NFV, SDN, cloud
and edge computing, 5G and 6G, and even for distributed
machine learning pipelines [2]–[5]. Here, my approaches could
be implemented in NFV MANO systems, SDN controllers,
orchestrators like Kubernetes, or improve CoMP in 5G or
6G systems. All of my approaches are publicly available as
open source (see links in the corresponding papers) and have
been contributed to various projects such as the European
H2020 5GTANGO project or collaborations with Huawei
Germany. While industry adoptions still requires technical
implementation, integration, and field studies, I do believe
that my contributions can have significant impact and improve
considerably over existing work. In fact, they can lead to
better user experience, lower costs, and reduced environmental
footprint, making them increasingly relevant in the future.
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