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Abstract— A more attractive future railway system needs to
offer more capacity in the railway network and improve quality
and punctuality. A fundamental centerpiece of future digitized
railway network operations is automated and optimized plan-
ning and dispatching. The sector initiative “Digitale Schiene
Deutschland” (DSD) develops a holistic and intelligent Capacity
& Traffic Management System (CTMS) that can automatically
plan and continuously optimize railway traffic at scale. Both,
planning and dispatching tasks, are highly complex and, today,
require human expertise and oversight.

Our main contribution is a multi-agent deep reinforcement
learning approach at the core of the envisioned CTMS, which
learns from interaction with a realistic, microscopic railway
simulation. Our results demonstrate that the proposed ap-
proach flexibly solves planning and re-scheduling tasks in the
realistic setting of a medium-sized part of the German railway
network. It exhibits response times and scaling properties that
make it a promising candidate for future applications in railway
operations at scale.

I. INTRODUCTION

Moving traffic from other modes of transport to rail will
significantly contribute to reducing carbon emissions and
help fight climate change. To accommodate more railway
passengers and freight traffic, the railway system must offer
significantly more capacity and quality to its customers. With
over 33 000 route kilometers, Germany has Europe’s largest
railway network. This network is shared by dense traffic of
roughly 40 000 trains rides per day, containing mixed traffic
of regional, long-distance, and freight trains with vastly
different characteristics [1]. This poses challenges for both
capacity and reliability.

Constructing timetables that maximize the existing net-
work’s capacity by distributing train traffic is a highly com-
plex task. Today, this requires many months of preparation by
human experts. Similarly, the quality of railway operations
today depends on constant oversight by thousands of human
dispatchers and signallers. To keep up the flow of traffic,
they monitor parts of the network and need to quickly react
to disruptions such as malfunctions or unforeseen delays,
coordinating with other dispatchers and signallers of nearby
areas to reroute trains and adjust schedules.
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With growing capacity needs and even denser traffic,
today’s largely manual planning and dispatching processes
quickly reach their limits. Hence, the sector initiative “Dig-
itale Schiene Deutschland” (DSD) has the goal to create
a fundamentally modernized railway system that optimizes
the capacity in the rail network and improves quality and
efficiency [2]. A core part of DSD’s vision is a Capacity &
Traffic Management System (CTMS), which can be under-
stood as a central planning and dispatching machine over
all planning horizons. CTMS is able to create microscopic
schedules at all planning stages with a level of detail that
enables the automated operation of trains and the automated
control of digital interlocking. Thereby, CTMS seamlessly
integrates the processes of railway planning and operations
that are separated today. CTMS also supports a train-centric
moving block safety logic, which will further increase the
capacity on the railway network where implemented [3].

Developing the envisioned CTMS requires overcoming
many challenges. CTMS relies on an accurate, up-to-date
model of the railway infrastructure and vehicles. It needs a
fine-grained and realistic simulation to evaluate impact and
feasibility of different planning and operations decisions at
scale. Finally, CTMS needs an optimization component to
produce microscopic, executable schedules that maximize
capacity, quality, and efficiency under a large number of
constraints and with a complex optimization function. In this
paper, we focus on the optimization component of CTMS.

Inspired by the success of Deep Reinforcement Learn-
ing (RL) in recent years, both in real-time continuous control
and in strategic planning [4], we propose a Multi-Agent Deep
Reinforcement Learning (MARL) approach. We formalize
the corresponding Partially Observable Markov-Decision
Process (POMDP) to match the real-world requirements
of railway capacity and traffic management. Our approach
learns from interaction with a realistic railway simulation,
flexibly adapting to various scenarios and generalizing to
unseen situations. In doing so, it can produce and continu-
ously adjust schedules for planning as well as dispatching
purposes. Our approach is scalable thanks to the multi-
agent architecture, where the schedules of a high number
of trains can be processed in parallel while considering
global objectives. While training MARL models is time-
consuming, trained models can produce solutions quickly,
promptly reacting to disruptions or changed requirements.

In the current, still prototypical implementation, the ap-
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proach already handles and coordinates dense railway traffic
in a medium-sized corridor. We demonstrate its capabilities
on a part of the German railway network with 29 stations
including a large central station. We show its ability to
construct initial timetables as well as to react to disrupted
tracks by automatically rerouting (directly and indirectly)
affected trains and adjusting their schedules.

II. RELATED WORK

Early studies applying RL to transportation problems, e.g.,
by controlling traffic signals [5], have demonstrated that RL
can effectively reduce congestion in dynamic transportation
environments. Due to the use of tabular single-agent RL,
such initial approaches are still limited to simple, small-
scale problems. Most recent approaches leverage Deep RL,
which, unlike tabular RL, supports large and continuous state
spaces. Farazi et al. survey such Deep RL approaches for
transportation, including railway [6], where scheduling and
routing is very challenging and constrained by the limited
amount of tracks that are shared by diverse train types.

The surveyed work [6] as well as the very recently pub-
lished work by Gorsane et al. [7] propose single-agent Deep
RL approaches that focus on rescheduling trains in railway
operations. Gorsane et al. [7] work on an abstract event
graph representing the schedule of all trains. Their approach
iteratively modifies this event graph and the corresponding
schedule by choosing from a predefined set of actions, e.g.,
to re-order trains and adjust timings. While a heuristic is
needed to create the initial schedule, their RL approach can
effectively reduce overall delay thanks to its global view of
the schedule and its restricted action space. In contrast, our
proposed MARL approach can produce and adjust railway
schedules from scratch, allowing more degrees of freedom
without requiring a feasible starting solution. Our MARL
approach can also overcome potential scalability limits of
single-agent RL approaches by distributing control over
multiple parallel actors for each train [8].

Most related to our approach, Laurent et al. propose a
MARL approach for railway transportation [9]. To some
degree, our approach builds on theirs in terms of POMDP
design, e.g., limiting the complexity of large state spaces
in railway networks by constructing tree-based local obser-
vations ahead of each train. However, Laurent et al. focus
on a simplified, grid-based railway simulation. While this
simplification makes the problem more tractable and easier
to compute, it significantly reduces realism and real-world
applicability especially in future railway systems, where
maximizing the capacity of networks is crucial. Framing
problems realistically, thereby ensuring real-world applica-
bility, is a core challenge of RL for transportation [10].
Therefore, our approach integrates a realistic, microscopic
simulation environment, which provides continuous obser-
vations, supports realistic driving physics and speed profiles,
and enables various train types and safety systems as well as
other highly relevant features of a real-world railway system.

III. PROBLEM STATEMENT

In today’s railway systems, planning and operations are
strictly separated processes, involving different departments
(planners vs. dispatchers), business rules, time scales (months
in advance vs. in real-time), and objectives. Strongly sim-
plified, the goal of planning processes is to generate a
timetable that accommodates requests for train runs (by train
operators), while the goal of processes in operations is to
execute a pre-planned schedule. Although business processes
at both stages may continue to differ in the future, we
propose a problem formulation that addresses both problems
and therefore contributes to a more seamless connection
between the two domains. Among others, this will allow
to better include expected operational constraints at the
planning stage, which will lead to schedules that are easier
to execute. In this section, we outline our joint problem
formulation, indicating the problem parameters, the variables
controlled by our approach, and the optimization goal.

A. Problem Parameters

There are three main problem parameters, given as input:
1) The railway network to consider, 2) the train runs re-
quested on this network, and 3) the current operational state
of trains and switchable elements in the railway network.

We consider the railway network at a microscopic level
of individual tracks and points connecting these tracks.
Commonly, points connect three tracks and switch between
two options. Tracks may have stopping locations at certain
positions, e.g., at platforms inside a train station. At the bor-
der of the considered railway network, trains can transition
from/to other areas of control through “handover gates”.

Train runs define at which handover gate a train arrives in
the railway network, which stops to traverse in which order,
and at which outgoing handover gate the train is expected to
leave the network. Stops in a schedule can be specified as a
group of alternatives, e.g., all platforms within a given train
station, or a precise stopping location at an exact position.

Finally, the operational state specifies which trains are
currently in the railway network, their train types, positions,
velocities, and progress within the train runs at a given
time. Additionally, it contains the current positions of all
points and any restrictions in the railway network, e.g., non-
traversable tracks or malfunctioning points. Any change of
the operational state during real-time operations can trigger
a re-calculation of the schedule. For planning tasks, a stable
operational state is assumed.

B. Problem Variables and Goal

Based on the aforementioned input, the CTMS has the task
to produce different types of information: On the one hand, it
has to produce all information required to execute train runs,
such as train routes from handover via stops to handover,
velocities, and details of commercial stops. On the other
hand, it needs to produce all necessary requests to the digital
interlocking for setting points (and other network elements)
and granting movement permissions to the trains. All com-
mands have to take into account the rules of the safety logic



and other constraints such as speed limits. Safety-technically,
the CTMS is not responsible for guaranteeing collision-free
execution of railway traffic on the network. This task is
performed by a separate system (the interlocking), in our case
the Advanced Protection System (APS) [3]. Nevertheless,
CTMS shall observe the rules of the safety system in order
to produce executable commands.

Fulfilling the aforementioned task entails routing trains
and, especially in dense traffic, coordinating between trains.
Such coordination is very challenging for railway traffic
since the number of available tracks in the railway network
and their connectivity are highly limited. Wrong navigation
decisions can lead to a cascade of effects that result in
congestion or even deadlocks much later and faraway from
the original cause. Similarly, disruptions of a single track
(e.g., by a fallen tree) can have far-reaching effects on the
entire schedule. In comparison, traffic management for cars
or drones is much easier since they can easily evade small
obstacles without blocking all following traffic.

IV. PROPOSED MARL APPROACH

To solve the aforementioned problem of railway capacity
and traffic management (Sec. III), we propose a Multi-Agent
Reinforcement Learning (MARL) approach. Our MARL
approach controls each train individually, taking relevant in-
formation into account and issuing commands to steer trains
through the railway network to complete their requested train
runs. In contrast to our MARL approach, a typical single-
agent RL approach would consider and control all trains at
once, which easily leads to scalability issues [8].

The MARL approach interacts with a (simulated) railway
environment by observing its current state, issuing com-
mands (called actions), and receiving feedback through re-
wards. A main challenge in applying MARL to our problem
is designing the underlying Partially Observable Markov
Decision Process (POMDP), which defines the corresponding
observations, actions, and rewards. In the following, we
describe the considered simulated railway environment, our
POMDP design, and the underlying RL algorithm.

A. Simulated Railway Environment

To train and evaluate our MARL approach, we utilize a
simulation environment that is being developed at Deutsche
Bahn in the context of DSD. It models the railway system
with a high degree of detail, enables target features of the
future digitized railway system, and is tailored to be used for
training and executing MARL models.

Simulated level of detail: The simulated railway environ-
ment is microscopic in the sense that it models the network
including all relevant field elements, down to individual point
switches. It also allows fine-grained temporal control down to
single seconds: Rather than just simulating predefined events
(as it would be the case for an event-based simulation), it can
simulate per-second train movements and allows interaction
with the environment by issuing commands. Therefore, at
any given time step the simulation yields an accurate picture

Fig. 1. Visualization of local, tree-based observations for the left train.

of the operational situation in the rail network. This feature
is crucial for the decision-making by our MARL approach.

Simulated dynamics: The environment accurately simu-
lates train physics, integrating between the discrete time
steps without loss of precision. Unlike other available railway
simulations that operate on a coarse-grained grid [11], our
environment simulates with much higher precision (down to
millimeters).

Realistic and artificial data: The simulation allows import-
ing real railway networks, schedules, and other operationally
relevant data. It also supports generation and use of artificial,
yet realistic data, which is useful for MARL training.

Modular architecture: The simulation environment is built
in a modular way that allows interaction with our MARL
approach as well as other optimization approaches. It is also
modular with respect to the simulated railway safety logic.
In principle, it can accommodate different version of block-
based safety systems as well as the future, train-centric safety
logic of DSD’s target picture [3].

B. Partially Observable Markov Decision Process (POMDP)

To solve the railway scheduling problem with MARL, we
design the corresponding POMDP, taking information about
train positions, velocities, and planned routes of all trains into
account. In most real-world problems the full environment
state with all underlying details is not explicitly known
by the RL approach, i.e., it is only partially but not fully
observable [12]. Similarly, observing the full environment
state (entire railway network, all trains and switches, etc.)
would be not scalable for our approach. Hence, it relies on
partial information that is relevant and realistically available.

Formally, a POMDP is defined by the tuple
(O,A,R, P, γ), where O are the available observations of the
overall state, A the actions, and R the reward function, each
designed by us. P is the transition function that describes
the environment dynamics, i.e., formalizing what happens
when applying a certain action in a specific situation, and
is dictated by the (simulated) railway environment. The
discount factor γ is relevant for the reward and explained
later on. We formulate the observations, actions, and reward
of our POMDP as follows:

Observations O: For each train, the MARL model receives
information reflecting its partial perspective of the overall



environment state in local, tree-based observations. These
local observations contain information on the surrounding of
the train, including track information, switch statuses, and
positions of nearby trains, encapsulated in a tree structure.
Fig. 1 illustrates an example tree structure for the train
in the bottom left corner (tree depth 0 shown in green,
depth 1 in blue, depth 2 in purple). Tree observations encode
spatial relationships and track choices efficiently. However,
their scalability is challenged by the exponential increase in
observation size with tree depth, highlighting the need for a
balance between depth and manageability of representation.
Complementing the local observations, we designed observa-
tions for distant trains, summarizing corresponding data like
their current track numbers, speeds, and destinations.

Actions A: The MARL model controls each train individu-
ally. For each train, it has two primary dimensions of control:
1) Adjustments to train speed and 2) switching upcoming
points in the railway network ahead of the train. As many
MARL algorithms require discrete actions, we discretize the
speed control into a set of predefined velocities.

Reward R: The reward function is designed to incentivise
completing the requested train runs. It gives a binary, positive
reward of +1 for each stop reached by the train as well as for
arriving at the final destination. The underlying RL algorithm
tries to achieve rewards quickly, which motivates the MARL
model to steer trains to their stops and destination as quickly
as possible. This emphasis on early rewards and completing
train runs quickly can be controlled by discount factor γ.

C. APEX DQN Algorithm

Our MARL approach leverages Distributed Prioritized
Experience Replay, also known as APEX DQN algo-
rithm [13]. APEX DQN improves over the popular Deep
Q-Learning (DQN) algorithm [14] by its distributed archi-
tecture and prioritized experience replay, facilitating efficient
learning in complex, multi-agent environments.

Our MARL approach controls each train individually, yet
the model leverages a shared neural network for each train.
Using a shared neural network, experiences are collectively
processed, allowing for the rapid dissemination of insights
and strategies across all trains.

V. EVALUATION

A. Evaluation Setup

1) Evaluation Scenarios: We evaluate our MARL ap-
proach across different situations on parts of the Magdeburg
railway network (Fig. 2). First, we consider dense traffic on
a small network section in Sec. V-B. In Sec. V-C we then
investigate varying traffic on the full Magdeburg network,
also evaluating the impact of a disrupted track. Finally,
Sec. V-D analyzes the scalability of our approach.

2) Baseline Comparison: We compare our MARL ap-
proach against a greedy baseline. The greedy approach
always runs each train at maximum allowed speed. If routing
decision have to be made, it chooses one of several options
to reach the destination at random. This means that trains can
individually reach their goals quickly and reliably. However,

Fig. 2. Magdeburg railway network used for evaluation, consisting of
29 stations, 354 stopping locations, 619 junctions, and 894 bidirectional
tracks with a total length of 343 kilometers.

TABLE I
SUCCESS RATES OF OUR MARL APPROACH VS. A GREEDY BASELINE.

Evaluation Scenario MARL Approach Greedy Baseline

Small Network (Sec. V-B) 100% 69%
Large Network (Sec. V-C)

Without Disruption 94% 14%
With Disruption 94% 16%

Scalability (Sec. V-D)
19 Trains 100% 32%
41 Trains 99% 10%

it does not explicitly consider coordination between trains,
which is a key challenge in railway scheduling.

3) Training Setup: Our MARL approach was trained
for 13 million environment time steps, where each step
corresponds to 20 s of simulated time. The approach was
trained up-front on the different parts of the network in
randomly generated situations. The overall training time was
around 72 hours on an AWS cluster with 45 CPUs and up
to 115GB of RAM. While training is time-consuming, the
trained MARL approach can create new railway schedules
rapidly and generalizes to new and unseen situations.

B. Traffic Management on a Small Network

First, we evaluate our approach on a small part of the
Magdeburg network containing one station with dense traffic
(top left in Fig. 2). Specifically, we consider 100 different
scenarios, each with 10 active trains with varying start posi-
tions and requested train runs. In each case, the trains need to
stop at the station at one of the platforms. We are interested in
how well our approach handles these dense traffic scenarios,
controlling train routing and timing to distribute trains and
avoid congestion and deadlocks. We measure and evaluate
the success rate of completed train runs (in percent), where
the requested stops and destinations have been reached.

As shown in Table I and Fig. 3, our MARL approach
solves these scenarios perfectly, reaching 100% success rate.
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Fig. 3. Overview of evaluation results: Success rate of our MARL approach
vs. a greedy baseline across all evaluation scenarios.

In contrast, the greedy baseline only achieves 69% success
rate. The remaining train runs were not fully completed, as
trains did not reach their requested stops or destinations due
to congestion or deadlock.

C. Traffic Management on a Large Network

Following the dense scenarios on the small network,
we now evaluate our approach on the entire Magdeburg
network (Fig. 2). On this large network, we created 72
different scenarios with 17 to 41 trains and six distinct traffic
classes of freight traffic, regional traffic, and long distance
traffic. Each traffic class is associated with a different train
type, characterized by specific technical attributes such as
maximum speed, acceleration and deceleration capabilities.
Traffic management on this larger network with more trains
is much more challenging, because a) more trains and
network elements (points) have to be controlled and b) more
farsighted coordination between faraway trains and across
longer time horizons is required.

1) Without Disruption: On average, our proposed MARL
approach still manages to complete 94% of all requested train
runs on the full Magdeburg network (Table I and Fig. 3).
While the results are not perfect yet, the approach is already
able to coordinate trains across relatively long distances and
time horizons in almost all cases. In contrast, the greedy
baseline performs very poorly and only completes 16% of
the requested train runs on average. Because the greedy
approach steers all trains along any of the available paths
without waiting for or coordinating with other trains, a large
majority of trains ends stuck in congestion and deadlock.

2) With Disruption: Next, we consider the same large
Magdeburg network and the same 72 scenarios but introduce
a disruption. Particularly, we assume that a heavily used track
at the center of the network is blocked (e.g., by a fallen tree
or a malfunction). Now, the task is to react to this disruption
and reroute affected trains such that they can still fulfill their
requested train runs – a use case where automation is highly
desirable in today’s railway systems.

20 25 30 35 40
Number of Trains

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(in
 %

)

Approach
MARL
Greedy

Fig. 4. Success rates of our MARL vs. a greedy approach on scenarios
with increasing number of trains.

The greedy approach is barely affected by the disruption
because it fails to complete most requested train runs even
without disruption. However, the schedules produced by our
MARL approach without disruption (Sec. V-C.1) need to be
adjusted significantly to avoid the blocked track. Our evalu-
ation shows that the MARL approach successfully learns to
reroute affected trains and still complete 94% of train runs
successfully, even after such a major disruption (Table I and
Fig. 3). In fact, the MARL approach not only reroutes trains
whose original path was directly affected by the disrupted
track. It also reroutes other, nearby trains to make way for
the directly affected trains and to avoid congestion around
the disruption. To illustrate the produced schedules of the
MARL approach before and after disruption, we publish a
video with visualizations of the corresponding schedules1.

Note that the MARL approach has been trained with
various disruptions but not explicitly with the track blocked
here. Hence, it learned from its training experience and
successfully generalized to this disruption that was likely
never seen during training. This indicates that the approach,
after diverse training, also handles unforeseen situations well.

D. Scalability Analysis

Finally, we investigate the scalability of our approach by
evaluating its success rate on the large Magdeburg network
with an increasing number of trains. Our MARL approach
maintains a success rate of 100% for up to 22 trains. Beyond
that number, the success rate slowly declines towards 90%
(Fig. 4). The figure shows high variance in success rate,
which is likely due to varying scenario complexity. The
complexity not only grows with an increasing number of
trains but is also determined by other factors, such as relative
train positions and the specifics of the requested train runs.
We plan to further investigate how to measure and control
problem complexity in future work.

1The video still needs to be released by DSD and will be available for
the final, camera-ready version of this manuscript.
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Fig. 5. Computation times for an increasing number of trains.

While the greedy baseline can reliably complete single,
isolated train runs (not shown in Fig. 4), it does not coordi-
nate between trains (as mentioned in Sec. V-C). This leads
to success rates of only 32% for 19 trains on average. The
lack of coordination by the greedy baseline aggravates for
larger numbers of trains, which leads to an average success
rate of only 10% for 41 trains.

In addition to the success rate, we also investigate the
computation times of our MARL approach for increasing
numbers of trains. Fig. 5 shows the average times needed
to compute a complete schedule with growing numbers
of trains on the large Magdeburg network. While there is
high variance, the figure roughly shows a linear increase
in computation time with the number of trains. Again, the
variance is likely caused by varying scenario complexity
and also partly by fluctuating utilization of the underlying
hardware. The computed schedules represent scenarios of
42min of (simulated) train movements on average. Com-
putation times for these schedules are consistently below
30 s, which is a massive improvement over today’s manual
processes. Furthermore, our MARL approach is significantly
faster than common Operations Research approaches using
mathematical optimization, where processing time grows
exponentially with increasing problem size [7].

VI. CONCLUSION

We present a MARL approach for planning and dispatch-
ing railway traffic. Our approach was tested in a microscop-
ically simulated railway environment that represents features
of a future digitized railway system. The results show that
our proposed MARL approach is reliably able to construct
schedules on small but heavily utilized railway networks. On
larger networks, where the challenge of coordinating trains at
short and long range is much more pronounced, the MARL
approach produces promising though not yet perfect results
across a wide range of situations.

To further improve the proposed MARL approach, future
research could tackle the POMDP design (Sec. IV-B), e.g., by
constructing a more explicit reward for cooperation among

trains. Performance might be further improved by funda-
mentally optimizing the underlying RL algorithms or neural
network architectures.

Still, our findings indicate that the presented approach is
able to cope with the problem’s complexity and scales well.
Importantly, our analysis suggests a very favourable linear
relationship between problem size and computing time.
Overall, our results show that our proposed MARL approach
has the potential to enable a new level of automation in
railway planning and dispatching, ultimately leading to more
capacity and quality in the railway system.
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